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Abstract 
 

Understanding the rainfall process is critical for the solution of several regional environmental problems of 

integrated water resources management at regional scales, with implications for agriculture, climate change, and 
natural hazards such as floods and droughts. Statistical modeling and data analysis are key instruments for 

studying these processes. The main objective of this article is to examine rainfall pattern over time, from 1974 to 

2010, in Ashanti region of Ghana. Data for the study was obtained from the Ashanti regional division of Ghana 
meteorological service. It was subsequently analyzed using Seasonal Autoregressive Integrated Moving Average 

(SARIMA). The results showed that rainfall pattern in Ashanti region significantly changes over time. There are 

periods of low variability and others of extreme variability separated by periods of transition. Also, it was found 

that there is a slight decrease in rainfall figures from August to December when the post sample forecast is 
compared to the actual rainfall figures. However, February to March experienced a slight increase in rainfall 

figures in terms forecast figures. Generally, therefore, the forecast figures for the months show an increase in the 

rainfall figures for the subsequent year(s), all things being equal.    
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1. Introduction 
 

Understanding the rainfall process is critical for the solution of several regional environmental problems of 

integrated water resources management at regional scales, with implications for agriculture, climate change, and 
natural hazards such as floods and droughts. Statistical modeling and data analysis are key instruments for 

studying these processes. 
 

The majority of climatic change studies try to identify significant variations of central tendency values of time 
series, especially for temperature and less frequently for rainfall series. These studies begin to achieve clear 

results in relation to temperature: increasing minimum temperature values, particularly for urban environments. 

On the contrary, rainfall research does not achieve such precise results, and in some cases discrepancies can even 
be found in different studies referring to the same spatial area; that is the case of the Mediterranean (Tabony , 

1981; Djellouly et Daget, 1989; Maheras, 1988; Maheras et Vafiaris, 1990; Benito, Orellana y Zurita, 1994). 

However, variability pattern has rarely been under consideration in this type of studies. More often, this topic has 

been indirectly dealt with by use of the analysis of extreme events (Kutiel et al., 1996) and the IPCC document 
even uses this methodology when examining variability trends (Houghton et al., 1996). The same considerations 

can be made in relation to the North Atlantic Oscillation. Most research has been focused on trend analysis 

(Kalnicky, 1987; Makrogiannis et al., 1991; Hurrel, 1995; Karl, 1995 and Ruizdelvira and Ortizbeviá, 1997) but 
very little has been done to analyse its variability. So, various reasons would seem to suggest the need for this 

type of study in our region. 
 

The main objective of this paper is to examine rainfall pattern over time, from 1974 to 2010, in Ashanti region of 

Ghana. Also, the study seeks to forecast rainfall figures. The World Bank climate change experts’ opinion is that 

the poorest of the poor in South Asia are the most affected by climate change.  
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The impact of higher temperatures, more extreme weather events such as floods, cyclone, severe drought, and sea 
level rise are already being felt in South Asia, and will continue to intensify (Huq et al., 1998; Karim et al., 1998; 

Ali, 1999). Long-term planning is impossible without any idea of the change of climate to be happened in future. 

Climate models are the main tools available for developing projections of climate change in the future (Houghton 
et al., 2001; Houghton et al., 1995). 
 

In recent years, Atmosphere-Ocean General Circulation Models (AOGCMs) have been used to predict the 

climatic consequences of increasing atmospheric concentrations of greenhouse gases (McCarthy et al., 2001; 
McGuffie and Henderson-Sellers, 1997). 
 

Climate is a driver for almost every natural resource management issue being tackled by regional bodies, and 

climate change will have far reaching impacts on many ecological, hydrological and resource- degrading 

processes. The highest horizontal resolution of any AOGCM published is around 300 km (Murphy and Mitchell, 
1995). Yet in order to assess potential impacts of climate change, regional information at a scale of 100 km or 

finer (typically around 50 km) is needed (Dickinson et al., 1989; Hack et al., 1993; Grell et al., 1994; Robinson 

and Finkelstein, 1991). Regional Climate Model (RCM), therefore, is the best tool for dynamical downscaling of 

climate features in case of obtaining detailed information for a particular region (Jones et al., 2004; Georgi and 
Hewitson, 2001). Downscaling from RCM outputs are important in understanding the local phenomena. 
 

2. Materials and Methods  
 

2.1 Study Area 
 

In order to study rainfall variability in Ashanti region, records from twenty seven meteorological district stations 

were selected. All of them were well distributed over the region and span a period of 35 years, as can be seen in 
Figure 1. 
 

2.2 The Box-Jenkins Method 
 

In economic time series analysis, the Box–Jenkins modeling method, named after the statisticians Box and  

Jenkins (1970), describes stationary time series and applies autoregressive moving average ARMA or 

autoregressive integrated moving average  ARIMA models to find the best fit of a time series to past values of 
this time series in order to make forecasts. The methodology involves three steps and these are; 
 

a. The first step is model identification- Identification of model consists of specifying the appropriate structure 

(AR, MA or ARMA) and order of model. Models can also be identified by looking at plots of the autocorrelation 

function (ACF) and partial autocorrelation function (PACF). Thus making sure that the variables are stationary, 

identifying seasonality in the dependent series and using plots of the ACF and PACF of the dependent time series 
to decide which (if any) autoregressive or moving average component should be used in the model (Box and 

Jenkins 1970). 
 

b. The second step is to estimate the parameters of the model- Coefficients of the models can be estimated by 

maximum likelihood estimation or non-linear least-squares estimation methods. Estimation of parameters of MA 

and ARMA models usually requires a more complicated iteration procedure (Box and Jenkins, 1970; Chatfield, 

2004). 
 

c. The third step is model checking and Forecasting- Two important elements of checking are to ensure that the 

residuals of the model are random, and to ensure that the estimated parameters are statistically significant. Usually 
the fitting process is guided by the principal of parsimony, by which the best model is the simplest possible 

model. Plotting the mean and variance of residuals over time and performing a Ljung-Box test or plotting 

autocorrelation and partial autocorrelation of the residuals are also helpful to identify misspecification (Anderson, 

1976). 
 

2.3 Types of models  
 

2.3.1 Autoregressive (AR) and Moving Average (MA) Models 
 

An autoregressive model is a model in which one uses the statistical properties of the past behavior of a variable 

to predict its behavior in the future.   
 

http://en.wikipedia.org/wiki/Time_series_analysis
http://en.wikipedia.org/wiki/Methodology
http://en.wikipedia.org/wiki/Statistician
http://en.wikipedia.org/wiki/George_Box
http://en.wikipedia.org/wiki/Gwilym_Jenkins
http://en.wikipedia.org/wiki/Gwilym_Jenkins
http://en.wikipedia.org/wiki/Gwilym_Jenkins
http://en.wikipedia.org/wiki/Autoregressive_moving_average
http://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
http://en.wikipedia.org/wiki/Forecast
http://en.wikipedia.org/wiki/Autocorrelation
http://en.wikipedia.org/wiki/Stationary_process
http://en.wikipedia.org/wiki/Autocorrelation
http://en.wikipedia.org/wiki/Partial_autocorrelation
http://en.wikipedia.org/wiki/Maximum_likelihood_estimation
http://en.wikipedia.org/wiki/Non-linear_least-squares_estimation
http://en.wikipedia.org/wiki/Ljung-Box_test
http://en.wikipedia.org/wiki/Autoregressive
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The general representation of an autoregressive model of order p, AR(p) is 

𝑌𝑡 = 𝜇 + Ф1𝑌𝑡−1 + Ф2𝑌𝑡−2+⋯+ Ф𝑝𝑌𝑡−𝑝 + 𝜀𝑡  

where the term εt is the source of randomness and is called white noise. Ф1  ,Ф2 Ф3 …Ф𝑝  are unknown 

parameters relating  𝑌𝑡  𝑡𝑜 𝑌𝑡−1,𝑌𝑡−2,…  𝑌𝑡−𝑝   and must be estimated from sample data. 

The notation MA(q) also refers to the moving average model of order q given by 

𝑌𝑡 = 𝜇 + Ф1𝜀𝑡−1+Ф2𝜀𝑡−2 + ⋯+ Ф𝑞𝜀𝑡−𝑞 + 𝜀𝑡  

where the Ф1, ..., Ф𝑞  are the parameters of the model, μ is the expectation of Yt (often assumed to equal 0), and 

the 𝜀𝑡 , 𝜀𝑡−1,... are again, white noise error terms (Gershenfeld, 1999; Shumway, 1988) 
 

2.3.2. Autoregressive-Moving-Average Modeling (ARMA) 
 

We have seen from above that the AR model includes lagged terms on the time series itself, and that the MA 

model includes lagged terms on the noise or residuals. By including both types of lagged terms, we arrive at 
ARMA model. Therefore ARMA (p,q), where p is the autoregressive order and q the moving-average order can 

generally be represented as 𝑌𝑡 + Ф1𝑌𝑡−1 + ⋯+ Ф𝑝𝑌𝑡−𝑝=𝜀𝑡 + Ф1𝜀𝑡−1 + ⋯+ Ф𝑞𝜀𝑡−𝑞    
 

2.3.3 Seasonal ARIMA Model 
 

Seasonality usually causes the series to be non-stationary because the average values at some particular times 

within the seasonal span (months, for example) may be different than the average values at other times. 
 

The seasonal ARIMA model incorporates both non-seasonal and seasonal factors in a multiplicative model.  One 

shorthand notation for the model is 
ARIMA(p, d, q) × (P, D, Q)S, 

with p = non-seasonal AR order, d = non-seasonal differencing, q = non-seasonal MA order, P = seasonal AR 

order, D = seasonal differencing, Q = seasonal MA order, and S = time span of repeating seasonal pattern. 
 

Without differencing operations, the model could be written more formally as 

(1)      Φ(B
S
)φ(B)(xt - μ) = Θ(B

S
)θ(B)wt 

 

The non-seasonal components are: 

AR:  φ(B) = 1 - φ1B - ... - φpB
p
 

MA:  θ(B) = 1 + θ1B + ... + θqB
q
 

 

The seasonal components are: 
Seasonal AR:  Φ(B

S
) = 1 - Φ1B

S
 - ... - ΦPB

PS
 

Seasonal MA:  Θ(B
S
) = 1 + Θ1B

S
 + ... + ΘQB

QS
 

 

Seasonal differencing is defined as a difference between a value and a value with lag that is a multiple of S. With 

S = 12, which may occur with monthly data, a seasonal difference is  
(1-B

12
)xt = xt - xt-12. 

 

The differences (from the previous year) may be about the same for each month of the year giving us a stationary 
series. With S = 4, which may occur with quarterly data, a seasonal difference is (1-B

4
)xt = xt - xt-4. 

Seasonal differencing removes seasonal trend and can also get rid of a seasonal random walk type of non-

stationarity. 
 

Non-seasonal differencing:  If trend is present in the data, we may also need non-seasonal differencing.  Often a 

first non-seasonal difference will “detrend” the data using (1-B)xt = xt - xt-1 in the presence of trend (Penstate, 
2012). 
 

3. Results and Discussion 
 

The general objective of this study is to investigate the phenomenon of flood in recent times most especially in 

some parts of Kumasi in Ashanti Region Ghana in the context of the mathematical modeling using time series 
analysis.  
 

SPSS was used to model and estimate the model parameters of the second order seasonal ARIMA(0,0,0)x(2,1,0) 

model of rainfall in Ghana.  

http://en.wikipedia.org/wiki/White_noise
http://en.wikipedia.org/wiki/White_noise
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The paper is also intended to characterize and forecast rain pattern using time series analysis in order for 
stakeholders in Ghana to take decisions when rains set in prevent flood killing people as it did in previous years. 

Preliminary time series analysis of the data was performed using the Box-Jenkins ARIMA modeling 

methodology.  
 

3.1 Preliminary Data Analysis 
 

Preliminary time series analysis was performed on monthly rain data recoded from 1974 to 2010 using the Box-

Jenkins ARIMA modeling methodology. Time series plot was done using the raw data to assess the stability of 
the data and the following Fig. 1 was obtained. 
 

The plot shows that the time series is non-stationary. A non-stationary series is the one whose values do not vary 
over time around a constant mean and variance.  
 

The ACF and PACF plots indicate that there are seasonality trend which need to be removed in order for the data 

to be stationary. Seasonality usually causes the series to be nonstationary because the average values at some 
particular times within the seasonal span are different than the average values at other times. 
 

3.2 Data Stationarity Check 
 

Non-stationarity is also confirmed by the ADF test on the raw rain data in the table 1 below. Augmented Dickey-
Fuller Unit Root Test was done on the entire rain data. The table displays results of the test: statistic value -

0.872752 greater than critical vales -2.570444, -1.941582, -1.616245 all at 1%, 5%, and 10% respectively. This 

indicates that the series are non- stationary and also confirm that raw rain data needs differencing in order to be 
stationary. 
 

3.3 Data Differencing (Seasonality) 
 

If there is seasonality and no trend take a difference of lag S=12 because it is a monthly data with seasonality. 

Thus we may need to apply a seasonal difference and examine the ACF and PACF of   

(1-B
12

)xt = (xt -xt-12) 
 

3.4 Stationarity confirmation using ADF test 
 

Augmented Dickey-Fuller Unit Root Test was done on the entire rain data. The table 2 below   displays the results 

of the test: statistic value -5.194807 less than critical vales -2.570509, -1.941591, -1.616239 all at 1%, 5%, and 
10% respectively. This indicates that the series are stationary and confirms that the rain data needed to be 

differenced to be stationary.  
 

3.5 Model Identification 
 

After series of model test the following tentative models were obtained with the best model having the least BIC 

value of 8.592. 
 

3.5.1 Tentative Seasonal ARIMA Models 
 

ARIMA (0, 0, 0) x (2, 1, 0)   BIC = 8.592   

ARIMA (0, 0, 0) x (2, 0, 0)   BIC = 8.602 

ARIMA (0, 0, 0) x (1, 0, 0)   BIC = 8.690 

ARIMA (0, 0, 0) x (1, 1, 0)   BIC = 8.698 
 

3.6 Parameter Estimation 
 

The Seasonal ARIMA(0,0,0)x(2,1,0)12  is expressed as follows:  

1 12 1 2 24 2 36(1 ) ( )t t t tx x x x         
 

After fitting in the model parameters from (table 4) the following mathematical expression obtained; 

12 24 36(0.307) 0.323 0.370t t t tx x x x    
 

 

From table 3, the test statistic values of the AR lag1and lag2 are all significant at 5% level of significance because 
the p-values are 0.000. Bayesian Information Criterion (BIC) value is confirmed in table 4. 
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3.7 Model Adequacy or Diagnostic Test 
 

Besides testing that the estimated parameters are statistically significant, we also ensure that plotting of 

autocorrelation and partial autocorrelation of the residuals of the model obtained are helpful to identify 

misspecification. The Fig. 3 confirms that the model is very good as there are no spikes that cut the level. 
 

3.8 Post-sample forecast test  

After post-sample test the model 12 24 36(0.307) 0.323 0.370t t t tx x x x    
 
gives the following forecast 

values in Table 5. 
 

It is realized that the difference between the actual values and the model forecasted values are not great and is an 

indication of reliability of the model. 
 

4. Conclusion 
 

Rainfall pattern in Ashanti region significantly changes over time. There are periods of low variability and others 

of extreme variability separated by periods of transition. The results from the post sample forecast versus the 

actual rainfall figures indicates that there is a slight decrease in rainfall figures from August to December, which 
certify the validity of the rainfall model. However, February to March experienced a slight increase in rainfall 

figures in terms forecast figures. Generally, therefore, the forecast figures for the months show an increase in the 

rainfall figures for the subsequent year(s), all things being equal.  
 

The following intervention could be necessary; stakeholders, particularly the National Disaster Management 

Organization (NADMO), should begin to create awareness to enable the populace clear their choked gutters to 

allow free drainage when rains set in, since this will avoid flooding in some communities. Again, metropolitan 
assemblies should step up efforts to curb the putting up of buildings/structures on water ways.   
 

Acknowledgements 
 

We extend our sincere gratitude to the worker’s in the Ashanti regional meteorological service of Ghana for 

making available to us their records, to enable us extract the rainfall figures. 

 

References 
 

Ali, A. (1999). Climate change impacts and adaptation assessment in Bangladesh. Climate Res; 12: 109-16. 
Anderson, O. (1976). Time series analysis and forecasting: the Box-Jenkins approach. London, Butterworths, p. 182 pp. 

Benito, Orellana, and Zurita (1994): "Análisis de la estabilidad temporal de los patrones de precipitación en la Península Ibérica", in 
PITA and AGUILAR (Ed): "Cambios y variaciones climáticas en España", Publicaciones de la Universidad de Sevilla, pp183-193. 

Box, G.E.P. and Jenkins, G.M. (1970). Time series analysis: forecasting and control. San Francisco, Holden Day, p. 575 pp. 
Chatfield, C. (2004). The analysis of time series, an introduction, sixth edition: New York, Chapman &Hall/CRC. 

Dickinson, R., Errico, R., Giorgi, F., Bates, G. (1989). A regional climate model for the Western United States. Clim Change; 14(3): 
383-422. 

Djellouli and Daget (1989): "Le climat méditerranéen, change-t-il? Précipitations de quelques stations algériennes", Publications de 
l'AIC, vol. 2, pp 227-232. 

Georgi, F., Hewitson, B. (2001). Regional Climate Information – Evaluation and Projections. In: Cambridge University Press, 
Cambridge.  

Gershenfeld, N. (1999). The nature of mathematical modeling.  pp. 205-08 
Grell, G., Dudhia, J., Stauffer, D. (1994). A description of the fifth-generation penn state/NCAR mesoscale model (MM5). 

Technical Note TN- 398+IA, Technical report, National Center for Atmospheric Research (NCAR), Colorado. 
Hack, J., Boville, B., Briegleb, B., Kiehl, J., Tasch, P., Williamson, D. (1993). Description of the NCAR community climate model 

(CCM2). Technical report, National Center for Atmospheric Research (NCAR), Colorado. 
Houghton et al. (1996): "Climate Change 1995. The Science of Climate change. Contribution of Working Group 1 to the Second 

Assessment Report of the Intergovernmental Panel on Climate Change", Cambridge University Press. 
Houghton, JT., Ding, Y., Griggs, DJ., Noguer, M., van der Linden, PJ., Xioaosu, D., Eds. (2001). Climate Change: The Scientific 

Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate 
Change, Cambridge University Press, Cambridge. 

Houghton, JT., Ding, Y., Griggs, DJ., Noguer, M., van der Linden, PJ., Xioaosu, D., Eds. (2001). Climate Change 2001: The 
Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on 

Climate Change. Cambridge University Press, Cambridge. 
Houghton, JT., Meira, FLG., Callander, BA., Harris, N., Kattenberg, A., Maskell, K., Eds. (1995). Clim Change: Intergovernmental 

Panel on Climate Change (IPCC), Cambridge University Press, Cambridge. 



© Centre for Promoting Ideas, USA                                                                                                www.ijhssnet.com 

229 

 
Huq, S., Karim, Z., Asaduzzaman, M., and Mahtab, F., Eds. (1998). Vulnerability and adaptation to climate change for Bangladesh, 

Kluwer Academic Publishers, Dordrecht. pp 135. 
Hurrel, J. (1995): “Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation”, Science, vol. 269, pp 676-

679. 

Jones, RG., Noguer, M., Hassell, DC., et al., (2004). Generating high resolution climate change scenarios using PRECIS, Met 

Office Hadley Centre, Exeter, UK. 

Kalnicky, R. (1987): “Seasons, singularities, and climatic changes over the Midlatitudes of the Northern Hemisphere during 1899-
1969”, Journal of Climate and Applied Meteorology, vol. 26, 1496-1510. 

Karim, Z., Hussain, SkG., Ahmed, AU., (1998). Climate change vulnerability of crop agriculture. In: Huq S, Karim Z, 
Asaduzzaman M, Mahtab F, Eds. Vulnerability and adaptation to climate change for Bangladesh, Kluwer Academic 

Publishers, Dordrecht. 
Karl, T., and al. (1995): “Trends in high-frequency climate variability in the twentieth century”, Nature, 377, pp 217-220. 

Kutiel, Maheras, and Gkika (1996): "Circulation and extreme rainfall conditions in the Eastern Mediterranean during the last 
century", International Journal of Climatology, 16, pp 73-92. 

Maheras (1988): "Changes in precipitation conditions in the Western Mediterranean over the last century", Journal of Climatology, 
vol. 8, 179-189. 

Maheras and Vafiaris (1990): "Analyse spectrale des séries chronologiques des précipitations en Méditerranée occidentale", 
Publications de l'AIC, vol. 3, 421-429. 

Makrogiannis, T., Sahsamanoglou, H., Flocas, A. and Bloutsons, A. (1991): “Analysis of monthly zonal index values and long-term 
changes of circulation over the North Atlantic and Europe”, International Journal of Climatology, Vol.11, pp 493-503. 

McCarthy, JJ., Canziani, OF., Leary, NA., Dokken, DJ., White, KS., Eds. (2001). Climate Change 2001: Impacts, Adaptation. and 
Vulnerability, Inter- Governmental Panel on Climate Change (IPCC), Work Group II Input to the Third Assessment 

Report, Cambridge University Press, Cambridge. 
McGuffie, K., Henderson-Sellers, A. (1997). A climate modeling primer, John Wiley & Sons. 

Murphy, JM., Mitchell, JFB. (1995). Transient response of the Hadley Centre coupled ocean-atmosphere model to increasing 
carbon dioxide. Part II. Spatial and temporal structure of response. J Climate; 8: pp 57-80. 

Penstate, (2012). Applied Time Series Analysis: Seasonal ARIMA Models.   Retrieved October 12, 2010, from 
http://onlinecourses.science.psu.edu.   

Robinson, PJ., Finkelstein, PL. (1991). The development of impact oriented climate scenarios. Bull Am Meteorol Soc; 72: 481-90. 
Ruizdelvira, A. and Ortzbevia, J.M. (1997): “Precipitation, drought and oceano: meteorological influences in the Spanish climate”, 

Proc. Of the Third Conference on Climate Variations, pp 23-36. 
Shumway, R.H. (1988). Applied statistical time series analysis. Englewood Cliffs, NJ: Prentice Hall.  

Tabony, (1981): "A principal component and spectral analysis of European rainfall", Journal of Climatology, 1, pp 283-294. 
 

Appendix 

 
 

Figure 1: Map of the districts of the Ashanti region of Ghana. Created by Rarelibra for public domain use. Created 

using MapInfo Professional v7.5 and various mapping (en.wikipedia.org/wiki/File:Ashanti_districts.png) 

http://onlinecourses.science.psu.edu/
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Figure 2: Time Series Plot 

 

 
Figure 3: ACF and PACF plot of the raw data with constant term 
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Table 1: Augmented Dickey –Fuller Unit root test on raw rain data 
 

Null Hypothesis: tseries has a unit root     
Exogenous: None 

   

  

Lag Length: 12 (Automatic Based on AIC, MAXLAG=16)   
      t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic -0.872752 0.337511 

Test critical values:  1% level 
 

-2.570444   
  5% level 

 

-1.941582   

  10% level 
 

-1.616245   
*MacKinnon (1996) one-sided p-values. 

 

  

  
   

  
Augmented Dickey-Fuller Test Equation 

 

  

Dependent Variable: D(tseries) 
  

  
Method: Least Squares 

  

  

Included observations: 427 after adjusting endpoints   
Variable Coefficient Std. Error t-Statistic Prob 

tseries(-1) -0.028240 0.032357 -0.872752 0.383304 
D(tseries(-1)) -0.781036 0.057105 -13.677219 0.000000 

D(tseries(-2)) -0.826536 0.064287 -12.857002 0.000000 
D(tseries(-3)) -0.782290 0.066894 -11.694399 0.000000 

D(tseries(-4)) -0.762321 0.068378 -11.148599 0.000000 
D(tseries(-5)) -0.793903 0.067565 -11.750143 0.000000 

D(tseries(-6)) -0.770210 0.067078 -11.482359 0.000000 
D(tseries(-7)) -0.787933 0.066437 -11.859875 0.000000 

D(tseries(-8)) -0.763674 0.065632 -11.635713 0.000000 
D(tseries(-9)) -0.701285 0.065074 -10.776731 0.000000 

D(tseries(-10)) -0.713691 0.062209 -11.472562 0.000000 
D(tseries(-11)) -0.476951 0.058070 -8.213390 0.000000 

D(tseries(-12)) -0.142212 0.048658 -2.922694 0.003660 

R-squared 0.485502 
 

Mean dependent var 0.264871 
Adjusted R-squared 0.010581 

 

S.D. dependent var 101.902514 

S.E. of regression 74.145170 
 

Akaike info criterion 11.479899 
Sum squared resid 2275967.600430 

 

Schwarz criterion 11.603407 

Log likelihood -2437.958398 
 

F-statistic 30.051367 
Durbin-Watson stat 1.996599   Prob(F-statistic) 0.000000 

 
Figure 4: Time series plot of seasonal differenced rain data 
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Table 2: Augmented Dickey –Fuller Unit root test on order one differenced rain data 
 

Null Hypothesis: D(tseries) has a unit root     

Exogenous: None 
   

  
Lag Length: 16 (Automatic Based on AIC, MAXLAG=16)   

      t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic -5.194807 0.000000 

Test critical values:  1% level 
 

-2.570509   
  5% level 

 

-1.941591   

  10% level 
 

-1.616239   
*MacKinnon (1996) one-sided p-values. 

 

  

Augmented Dickey-Fuller Test Equation 
 

  
Dependent Variable: D(tseries,2) 

  

  

Method: Least Squares 
  

  
Included observations: 422 after adjusting endpoints   

Variable Coefficient Std. Error t-Statistic Prob 
D(tseries(-1)) -2.482040 0.477792 -5.194807 0.000000 

D(tseries(-1),2) 1.001673 0.460342 2.175933 0.030138 

D(tseries(-2),2) 0.705494 0.438098 1.610356 0.108099 
D(tseries(-3),2) 0.508650 0.412816 1.232147 0.218609 

D(tseries(-4),2) 0.400082 0.385292 1.038387 0.299710 
D(tseries(-5),2) 0.315010 0.356959 0.882482 0.378039 

D(tseries(-6),2) 0.243703 0.327508 0.744112 0.457240 
D(tseries(-7),2) 0.195171 0.297245 0.656600 0.511811 

D(tseries(-8),2) 0.229200 0.268095 0.854922 0.393100 
D(tseries(-9),2) -0.164539 0.243721 -0.675112 0.499990 

D(tseries(-10),2) -0.339345 0.214416 -1.582648 0.114282 
D(tseries(-11),2) -0.418929 0.185786 -2.254906 0.024673 

D(tseries(-12),2) -0.456021 0.157048 -2.903712 0.003889 
D(tseries(-13),2) -0.492854 0.128047 -3.849011 0.000138 

D(tseries(-14),2) -0.484603 0.098475 -4.921098 0.000001 
D(tseries(-15),2) -0.453495 0.067660 -6.702557 0.000000 

D(tseries(-16),2) -0.399617 0.035714 -11.189301 0.000000 
R-squared 0.835838 

 

Mean dependent var 0.000000 

Adjusted R-squared 0.681333 
 

S.D. dependent var 1.449127 
S.E. of regression 0.598627 

 

Akaike info criterion 1.851094 

Sum squared resid 145.133380 
 

Schwarz criterion 2.014044 
Log likelihood -373.580761 

 

F-statistic 121.298580 

Durbin-Watson stat 1.918800   Prob(F-statistic) 0.000000 

 

 

 

 

Table 4: Model Statistics 

Model 
Number of 
Predictors 

Model Fit statistics Ljung-Box Q(18) 

Number of 
Outliers 

Stationary R-
squared 

Normalized 
BIC 

     
Statistics 

            
DF Sig. 

raindata-
Model_1 

0           .343              8.592 9.682           16 .883 0 

Table 3: ARIMA Model Parameters 

     Estimate          SE      t         Sig. 

raindata-

Model_1 

raindata No Transformation AR, Seasonal Lag 1 -.693 .047 -14.886 .000 

Lag 2 -.370 .048 -7.756 .000 

Seasonal Difference 1    
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Figure 5: ACF and PACF of ARIMA (0,0,0)x(2,1,0)12 Residual 

 

Table 5: Forecast 

Model Aug 2010 Sep 2010 Oct 2010 Nov 2010 Dec 2010 Jan 2011 Feb 2011 Mar 2011 

raindata-

Model_1 

Forecast 111 281 124 39 35 5 79 88 

UCL 252 423 265 180 176 146 220 229 

LCL -30 140 -17 -102 -106 -137 -63 -53 

 
 

 
Figure 6: Forecast graph 


